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I INTRODUCTION .,-,

This report summarizes research on subbottom effects on underwater

acoustic propagation carried out at Applied Research Laboratories, The -.

University of Texas at Austin (ARL:UT), under Contract N00014-82-K-0679.

Our main goal was to extend the theory of normal modes to accurately treat .

the effects of shear wave propagation in the seafloor. This would provide

- the framework for determining the importance of shear wave processes in

shallow water areas and areas having thin sediment cover. Methods for

determining the major propagation paths in a sloping geometry were also

investigated.

The major accomplishment of our research was developing a procedure

for rigorously ordering and counting normal modes1 (the mode identification

problem) when the seafloor is represented by an impedance boundary

condition A natural extension of the theoretical methods used to solve the
mode identification problem led to establishing the relationship between

the mode concepts of normalization and cycle distance and the geometrical

ray concepts of beam displacement and time delay.2

As part of our research, we developed a normal mode computational

model that uses the mode identification procedure to assign mode numbers

and verify that the mode set is complete, i.e., that no modes have been

skipped. The impedance boundary condition is calculated from the plane
wave reflection coefficient of the seafloor. The model is very flexible

since it can be used with any subbottom description (layered viscoelastic,

Biot, etc.) for which the plane wave reflection coefficient can be calculated.

The computational model has already been used to examine the role of shear

wave processes in propagation to hydrophones and geophones at the seafloor
and in the substrate. 3 ,4  F-

This report is organized as follows. Section II reviews the

development of the impedance boundary condition normal mode approach.

Section III discusses our research on propagation over slopes. Appendix A

lists documentation produced under this contract.

IF- * - **--*.. .-- ... *-



11. A NORMAL MODE APPROACH USING AN IMPEDANCE BOUNDARY CONDITION

Traditional normal mode approaches are restricted in their ability to -,

realistically treat the effects of shear waves. For example, normal mode

calculations used to examine the optimum frequency of propagation in , :shallow water5 included shear wave effects only as a correction to the

mode attenuation coefficients. This approach is based on the rather.:----.

oversimplified view that shear waves are generated at the water-sediment :;i::

interface and are completely absorbed in the seafloor, when in fact the .

amount of energy coupled into shear waves at the water-sediment interface.-.-..
is negligible for unconsolidated marine sediments. 6  The unrealistically ii' "

large shear wave velocities (600 rots versus measured7 values of 150 m/s) --}..

needed to successfully model acoustic data emphasizes the fact that shear I .-
wave processes are not being accurately treated. Normal mode approaches.---''' :.

that include energy propagating as shear waves (rather then being.--.--

~*.1 " -

completely absorbed) are needed to investigate low frequency propagation in-i-'-.-

areas having thin sediment cover where shear wave propagation in theIL
basalt may be an important process. 8  ..

Including shear wave propagation in a layered, depth dependent seafloor"- ,,

greatly complicates the theoretical problem of defining and counting the

normal modes. The mode functions themselves have both shear and .-/.-.

* .1.- F°'°

compressional components in the seafloor. The usual procedure for ordering --e

modes in a fluid, based on counting the zero crossings of the mode function,
also breaks down since zero crossings can occur in both shear and

compressional components. .-.• •.

The approach we took is based on representing the seafloor as an

impedance boundary condition.9 This approach has the a ntage of breaking

the normal mode problem into lwo pt J) calculating the boundary e
conditicn as a function itoe separation constant in the wave equation (the

horizontal wav elociand (2) fininng the mode functions and eigenalues
for ncpedance boundary condition. The impedance boundary condition is

esily calculated from the plane wve reflection coefficient of the seafloor.

• - - : °'

modes thtin appoc fluid based onconingth zn erocrsin of the mo funton,

ao rk dn ie e co n cn crn o se a

compressi ' '" ."".'ona components'° • • ..°%' ° °•m ° " ". "7° "° •-. °'. '



which the reflection coefficient can be calculated, i.e., Diot, viscoelastic,
layered solid, and combinations of fluid and solid layers. Once this boundary
condition is established, the calculation of the mode functions and

eigenvalues is easily carried out using conventional numerical methods. %I--
We developed a method I for rigorously ordering and counting modes

when an impedance boundary condition is used to describe the seafloor. The

ability to accurately count modes is important for determining whether a

numerical calculation has produced a complete set of modes or has skipped

one or more The usual procedure of identifying the mode with the number

of zero crossings in the mode function will not work for the impedance
boundary condition because there is no information about the mode function

below the water-sediment interface. The basic idea of our procedure is to
decornoose the mode function in the water column into a magnitude and a
phase. The phase is made up of two parts; one depends only on the
impedance boundary condition and the other, only on the depth dependence of
the mode function in the water column. The boundary contribution to the

total phase is related to the phase of the complex valued reflection
coefficient of the seafloor. The pressure release boundary at the sea
surface causes the total phase to increment by 2n from mode to mode..

Modes are counted and ordered by the number of phase increments.

We als,-, developed and tested prototype software for a normal mode .

computational model implementing the irmpedance boundary condition
description of the seafloor. The impedance boundary condition is evaluated
from the plane wave reflection coefficient, which is supplied either as a
subroutine or as a table of values. The model makes the usual assumption
that the mode attenuation coefficients (the imaginary part of the complex
eigerivaiue) -re small enough to be a small correction to the eigenvalue. The

4o] first uses the bound]ary condition at the seafloor calculated without

attenuation t? ,rrduce an ordered set of normalized mode functions, modal
phase velocities, and modal group velocities. Mode functions in the seafloor
are obtained in our model as part of the calculation of the reflection .
:oefficient at the eiqenvalues. Once the mode functions are known, the

4
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mode attenuation coefficients are evaluated as a perturbation correction

based on the boundary condition calculated for a seafloor with atteruation

Our theoretical approach also led to a clarification of the relationship

between normal mode and geometrical ray descriptions of propagation.2

Previous research I 0 used the WKD approximation for the mode functions to

estimate derivatives with respect to mode number b'. taking differences

between quantities for neighboring modes. Our analqIsis resulted in a more

accurate assessment of the analogy between rays and modes by allowing

direct computation of derivatives with respect to mode number.

A second approach for including shear wave effects in a corrputational

normal mode model was also examined We reviewed several

techniques 1 1-13 for directly integrating the equations of motion for a
depth dependent, solid subbottom. These approaches were found to be -,

equivalent to calculating the plane wave reflection coefficient of the
seafloor, and therefore were not pursued.

Additional work was done to aid the design of a laboratory experiment -

(supported by ONR Code 425UA) to investigate propagation over a sloping

bottom. The experiment, to be conducted by ARL:UT in 1905, will involve
propagating a single mode up and down a slope. The acoustic field will be

measured as a function of depth and range and compared to the predictions
of adiabatic mode theory and coupled mode theory. We calculated normal

mode functions for a sequence of water depths which will be used in

designing the experiment and interpreting data.

5
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11. PROPAGATION IN A SLOPING GEOMETRY

There are indications that the transition from deep to shallow water

is a geometry favorable to low frequency propagation within the ocean
bottom. Model experiments 14 show that significant waterborne energy can
couple into the subbottom along slopes There is also evidence 15 that the
ambient noise level near 15 Hz is very low both on and below the seafloor.
These observations combine to suggest that sensors in shallow water can
detect low frequency energy from sources in deep water.

In 1981 ARL:UT carried out a preliminary analysis 1 6 of data collected
by Western Electric Company (now AT&T Technology Systems) off the coast
of Nova Scotia. Figure I shows the exercise area and source track.
Explosive source data were collected on a series of hydrophones placed
along the slope, as shown in Fig. 2. The geoacoustic description of the
exercise area given in Fig. 3 was developed from archived geological data.
The analysis concentrated on identifying candidate bottom penetrating i

arrivals in the data shown in Fig 4. These data were collected on - -

hydrophone 4 (shown in Fig. 2) and were produced by a 1.1 oz explosive
charge detonated at a depth of 18 m at a range of 24 7 km downslope from

hydrophone 4. A candidate bottom penetrating arrival (labeled S in Fig. 4)
was identified from an analysis of the time series in frequency bands from
10 to 1000 Hz Arrival S had energy concentrated near 35Hz and almost no
energy above 100 Hz. This lack of high frequency energy is consistent with
attenuation of the higher frequencies along a path through the subbottom. In b
contrast, arrival W had significant energy at frequencies up to 1000 Hz and
was identified as an arrival that diI not propagate through the subbottom.

Research carried cut under the present contract focused on modeling pw 1-

propagation along paths through the sediment for the environment of Fig. 3,
with the goal of clearly identifying subbottom penetrating arrivals in the
experimental data of Fiq. 4 We used two modeling approaches. The first
was a ray path analysis for which the ARL:UT range variable ray trace model
(MEDUSA) 17 was modified to include ray paths traveling through the
subbottom. The second was a normal mode analysis that used the ARL:IjT

7-
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adiabatic normal mode model (ADIAD) to calculate the travel time of modes

from their group velocities.

For the range variable ray trace analysis, the water column was

constructed from the measured bathymetry and sound speed profiles.

Published relationships between sediment type and geoacoustic

parameters7 were used to develop a qeoacoustic profile for the geological

structure of Fig. 2. The profile had three sloping layers, each having a

different dependence of compressional velocity on depth. Velocity ratios

across the water-sedimer.t interface and across interfaces between

sediment layers were assumed to be constant in range.

The ray analysis showed that sediment penetrating compressional
waves alone could not predict the observed arrival structure. There were no

strong eigenrays corresponding to the second and third arrivals in the first

0.7 s of Fio 4. Some deep penetrating paths with arrivals in this interval

were found, but they were too heavily attenuated to carry significant
energy. Eigenrays with one, two, and three shallow penetrations into the

" subbottom (300 m or less) had differences in travel time of about I s and

could not explain the arrivals with time separations of 0.3 and 0.5 s seen in

the data Of particular concern were the lack of an eigenray corresponding

to arrival S in Fig. 4 (the suspected sediment penetrating arrrival) and the
I existence of an energetic eigenray at about 0.75 s, a time at which there is

no signal in the data.

Sensitivity studies were carried out to determine whether errors in the

8eoacousc.. description of the area could explain the lack of aqreernent
between eigenray arrival times and the data. The thickness and

" compressional velocity gradient of each layer and the velocity ratio across

each interface were varied. Reasonable variations of these parameters did
-* not have a major effect on the eigenray structure. Thus, our conclusion is -.

that propagation mechanismns (e.g., shear waves, interface waves, head

waves, etc.) that were not included in our ray analysis are important for
this environrment.

12
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To determine whether propagation at low frequencies in this

environment had a modal character, we used the ARLUT adiabatic normal
mode model to calculate tt avel times of the modes for comparison with the

data. Fur our adiabatic normal mode analysi:., we approximated the range

dependent environment of Fig. 3 with a sequence of horizontally stratified

. range intervals. The discrete normal mode spectrum at 35 Hz ws-
calculated for each of these intervals. The travel timre of each mode was

. then evaluated from the range dependence of the group velocity.

About half of the 60 modes existing at the receiver had arrival times
within the 2.5 s extent of the data--far too many modes for the arrivals in

the data to be individual modes. Because calculation of the constructive
interference of several modes over the frequency band of the data was

beyond the scope of the cw adiabatic model, it was not possible to make a
definitive comparison with Fig. 4. However, the analysis did show that
there are modes at 35 Hz with travel times consistent with arrival S in
Fig. 4. The identification of these modes with arrival S is strengthened by

- the observation that their propagation loss is close to that obtained in

. Ref. 17 for arrival S in the 35 Hz band. These modes penetrate 200-400 m.
into the sediment. There are also nine modes with arrival times between

0.3 and 0.7 s that could make up the second and third arrivals in the first
0.7 s of data. These modes are mostly waterborne, but do penetrate
shallowl y (50-100 m) into the sediment near the receiver.

While the normal mode analysis was successful in predicting mode
travel times that are consistent with the overall duration of the data,
further research is needed to understand the time series of Fig. 4. The
adiabatic approach treats the range variability of the environment, but does
not include effects due to the broadband nature of the signal. The
interference between modes at different frequencies could be a major

4.- factor in producing the time dependence and magnitude seen in the data. If
this is true, further progress in the adiabatic analysis would require a more .4-

sophisticated computational model capable of simulating broadband time

series.

13
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